BG/L: Tuning for Many Nodes (Linpack)

John A. Gunnels

Mathematical Sciences Dept.

IBM T. J. Watson Research Center

BG/L: Tuning for Many Nodes (Linpack) on a new machine that everyone wants for equally valid reasons

John A. Gunnels

Mathematical Sciences Department

IBM T. J. Watson Research Center

Overview

- Overcoming a computational bottleneck
- Problem Mapping
- Communication operations
 - Row broadcast
 - Column broadcast
 - Pivot identification
 - Pivot row exchange
- Linear algebra kernels (single node)
 - Matrix multiplication
 - Triangular solve, multiple RHS
 - Scaling, rank-1 updates (code fusion)

LU Factorization: Brief Review

LINPACK Physical to Logical Mapping

LINPACK Problem Mapping

Panel Factorization: Option #1 Exploit Load Imbalance

- Distributed over relatively few processors
 - Especially in the 64K node case
- May take as long as several DGEMM updates
 - Value may change as libraries change
- DGEMM load imbalance
 - Block size trades balance for speed
- Want to use collective communication primitives if possible
 - May require no "holes" in communication fabric (to achieve near-optimal performance)

Speed-up Option #2: Reduce Load Imbalance

- Change the data distribution
 - Decrease the critical path length
 - Speed up panel factorization
 - Take advantage of communication abilities of machine
- Complements Option #1
- Memory size (small favors #2; large #1)
 - Memory hierarchy (high latency: #1)
- The two options can be used in concert

Communication Routines

- Broadcasts precede DGEMM update
- Routine needs to be architecturally aware
 - Multiple "pipes" connect processors
- Physical to logical mapping must be carefully managed
- Careful orchestration is required to take advantage of machines considerable abilities

Row Broadcast Torus

Row Broadcast Torus

Row Broadcast Torus

Row Broadcast

Row Broadcast

Broadcast

- Bandwidth/Latency
 - Bandwidth: 2 bytes/cycle per wire
 - Latency:
 - Sqrt(p), pipelined (large msg.)
 - Deposit bit: 3 hops
- Mesh
 - Recv 2/Send 3
- Torus
 - Recv 4/Send 4 (no "hot spot")
 - Recv 2/Send 2 (red-blue only ... again, no bottleneck)
- Pipe
 - Recv/Send: 1/1 on mesh; 2/2 on torus

Conclusion

- Avoiding Bottlenecks
 - Overlapping differing computations
 - Beneficial on large or "memory walled" machines
 - Duplicating computations (local state)
 - Combine with moving from critical path
 - Or make "critical" less so
- Take advantage of hardware's abilities
 - Algorithms & Architectures approach
 - "Mom & apple pie" (fundamental triangle; K-4)
 - Difference between good and optimal
 - Many characteristics are dynamic, but there is often a "safe" (fallback) method/approach/parameter

Conclusion

- Make use of models, extrapolated data
 - Use models to the extent that the architecture and algorithm are understood
 - Extrapolate from small processor sets
 - Vary as many (yes) parameters as possible at the same time
 - Consider how they interact and how they don't
 - Also remember that instruments affect timing
 - Often can compensate (incorrect answer results)
 - Utilize observed "eccentricities" with caution (MPI_Reduce)

Conclusion

- Data Structures & Communications
 - Global: Altered distribution
 - Use as much hardware as possible
 - Have a path for software maturing process
 - Local: Recursive Data Formats (2nd talk)
 - Take advantage of local processor features
 - Large flops/memory ratio leads to an enter, remap, execute, undo, exit pattern
 - Code fusion (2nd talk)

Conclusion II

Thanks to ...

- Gheorghe Almasi & Phil Heidelberger: MPI/Communications
- Vernon Austel: Data copy routines
- Gerry Kopcsay & Jose Moreira: System & machine configuration
- Derek Lieber & Martin Ohmacht: Refined memory settings
- Everyone else: System software & Machine time!

BG/L: Tuning for Many Nodes (Linpack)

John A. Gunnels

Mathematical Sciences Dept.

IBM T. J. Watson Research Center